Home
Welcome to PyEdmine’s documentation!
Introduction
PyEdmine is a library of algorithms for reproducing Knowledge Tracing, Cognitive Diagnosis, and Exercise Recommendation models.
Implemented
Built-in Data Preprocessing
- Assist2009
- Assist2009-full
- Assist2012
- Assist2015
- Assist2017
- Edi2020-task1
- Edi2020-task34
- Ednet-kt1
- Junyi2015
- Moocradar-C[courseId] (For example,
moocradar-C746997
) - Poj
- Slepemapy-anatomy
- SLP-[subject] (For example,
SLP-mat
) - Statics2011
- Xes3g5m
Built-in Models
Dataset used in the example is assist2009
First, Run examples/knowledge_tracing/mc2sc.py
to obtain the Q table based on single-concept format (i.e., the combination of multiple knowledge points is regarded as a new knowledge point) on the assist2009 dataset.
Knowledge Tracing
root dir: examples/knowledge_tracing
- ABQR ([Download])
- Run
abqr/get_graph.py --dataset_name "assist2009-single-concept"
- Run
train/abqr.py --dataset_name "assist2009-single-concept"
- Run
- AKT ([Download])
- Run
train/akt.py
- Run
- ATDKT ([Download])
- Run
train/atdkt.py
- Run
- ATKT ([Download])
- Run
train/atkt.py
- Run
- CKT ([Download])
- Run
train/ckt.py
- Run
- CLKT
- Run
train/clkt.py --dataset_name "assist2009-single-concept"
- Run
- DIMKT ([Download])
- Run
dimkt/get_difficulty.py
- Run
train/dimkt.py
- Run
- DKT ([Download])
- Run
train/dkt.py
- Run
- DKTForget ([Download])
- Run
train/dkt_forget.py
- Run
- DKVMN ([Download])
- Run
train/dkvmn.py
- Run
- DTransformer ([Download])
- Run
train/d_transformer.py --dataset_name "assist2009-single-concept"
- Run
- GIKT
- Run
gikt/get_graph.py
- Run
train/gikt.py
- Run
- HawkesKT ([Download])
- Run
train/hawkes_kt.py --dataset_name "assist2009-single-concept"
- Run
- HDLPKT ([Download])
- Run
train/hdlpkt.py --dataset_name "assist2009-single-concept"
- Run
- LBKT ([Download])
- Run
lbkt/get_statics.py
- Run
lbkt/get_factor.py
- Run
- LPKT ([Download])
- Run
train/lpkt.py
- Run
- MIKT ([Download])
- Run
train/mikt.py
- Run
- QDCKT ([Download])
- Run
qdckt/get_difficulty.py
- Run
train/qdckt.py
- Run
- QIKT ([Download])
- Run
train/qikt.py
- Run
- qDKT ([Download])
- Run
train/qdkt.py
- Run
- SimpleKT ([Download])
- Run
train/simple_kt.py
- Run
- SKVMN
- Run
train/skvmn.py
- Run
- SparseKT ([Download])
- Run
train/sparse_kt.py
- Run
- UKT
- Run
train/ukt.py
- Run
- GRKT
- DyGKT
Cognitive Diagnosis
root dir: examples/cognitive_diagnosis
- DINA ([Download])
- Run
train/dina.py
- Run
- HierCDF
- Run
hier_cdf/construct_graph_from_rcd.py
- Run
train/hier_cdf.py
- Run
- HyperCD ([Download])
- Run
hyper_cd/construct_hyper_graph.py
- Run
train/hyper_cd.py
- Run
- IRT ([Download])
- Run
train/irt.py
- Run
- MIRT ([Download])
- Run
train/mirt.py
- Run
- NCD ([Download])
- Run
train/ncd.py
- Run
- RCD ([Download])
- Run
/root/code/pyedmine/rcd/build_k_e_graph.py
- Run
/root/code/pyedmine/rcd/build_u_e_graph.py
- Run
/root/code/pyedmine/rcd/process_edge.py
- Run
train/rcd.py
- Run
Exercise Recommendation
root dir: examples/exercise_recommendation
- EB-CF
- Get Question Similarity Matrix
- Run
user_exercise_based_CF/que_sim_matrix.py
- Run
user_exercise_based_CF/que_sim_matrix_KT.py
- Run
user_exercise_based_CF/que_sim_matrix_CD.py
- Run
- Run
user_exercise_based_CF/evaluate_ub_cf.py
- Get Question Similarity Matrix
- UB-CF
- Get User Similarity Matrix
- Run
user_exercise_based_CF/user_sim_matrix.py
- Run
user_exercise_based_CF/user_sim_matrix_KT.py
- Run
user_exercise_based_CF/user_sim_matrix_CD.py
- Run
- Run
user_exercise_based_CF/evaluate_eb_cf.py
- Get User Similarity Matrix
- KG4EX ([Download])
- Get DKT_KG4EX model: Run
examples/knowledge_tracing/train/dkt_kg4ex.py
- Run
kg4ex/get_mlkc.py
- Run
kg4ex/get_pkc.py
- Run
kg4ex/get_efr.py
- Run
kg4ex/get_triples.py
- Run
train/kg4ex.py
- Get DKT_KG4EX model: Run